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Abstract
We study the spectrum of a random Schrödinger operator for an electron
subjected to a magnetic field in a finite but macroscopic two-dimensional
system of linear dimensions equal to L. The y direction is periodic and in the x
direction the electron is confined by two smooth increasing boundary potentials.
The eigenvalues of the Hamiltonian are classified according to their associated
quantum mechanical diamagnetic current in the y direction. Here we look at
an interval of energies inside the first Landau band of the random operator for
the infinite plane. In this energy interval, with large probability, there exist
O(L) eigenvalues with positive or negative currents of O(1). Between each of
these there exist O(L2) eigenvalues with infinitesimal current O(e−γB(logL)2

)
.

We explain the relevance of this analysis of boundary diamagnetic currents to
the integer quantum Hall effect.

PACS numbers: 73.43.Cd, 02.30.Tb, 03.65.Ge

1. Introduction

In this paper we are concerned with the boundary currents in the integer quantum Hall
effect that occurs in disordered electronic systems subject to a uniform magnetic field and
confined in a two-dimensional interface of a heterojunction [1]. It was recognized by Halperin
that boundary diamagnetic equilibrium currents play an important role in understanding the
transport properties of such systems [2]. However, it was later realized that there is an intimate
connection between these boundary currents and the topological properties of the state in
the bulk [3, 4]. Here we will study only diamagnetic currents due to the boundaries, and not
those produced by the adiabatic switching of an external infinitesimal electric field (as in linear
response theory) which may exist in the bulk. Many features of the integral quantum Hall effect
can be described in the framework of one-particle random magnetic Schrödinger operators
and therefore it is important to understand their spectral properties for finite but macroscopic
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samples with boundaries. This problem has been approached recently for geometries where
only one boundary is present and the operator is defined in a semi-infinite region [5–7].

Here we will take a finite system: our geometry is that of a cylinder of length and
circumference both equal to L. There are two boundaries at x = ±L

2 modelled by two smooth
confining potentials U�(x) (� for left) and Ur(x) (r for right), and we take periodic boundary
conditions in the y direction. These potentials vanish for −L

2 � x � L
2 and grow fast enough

for |x| � L
2 . The Hamiltonian is of the form

Hω = H0 + Vω + U� + Ur (1.1)

whereH0 is the pure Landau Hamiltonian for a uniform field of strength B and Vω is a suitable
weak random potential produced by impurities with sup |Vω(x, y)| = V0 � B (see section 2
for precise assumptions). Before explaining our results it is useful to describe what is known
about the infinite and semi-infinite cases.

In the case of the infinite plane R
2 for the Hamiltonian H0 + Vω the spectrum forms

‘Landau bands’ contained in
⋃
ν�0

[(
ν + 1

2

)
B − V0,

(
ν + 1

2

)
B + V0

]
. It is proved that the

band tails have pure point spectrum corresponding to exponentially localized wavefunctions
[8–12]. There are no rigorous results for energies at the band centres, except for a special
model where the impurities are point scatterers [13, 14]. As first shown in [15] these spectral
properties of random Schrödinger operators imply that the Hall conductivity—given by the
Kubo formula—considered as a function of the filling factor (ratio of electron number and
number of flux quanta) has quantized plateaux at values equal to νe2/h, where ν is the
number of filled Landau levels. The presence of the plateaux is a manifestation of Anderson
localization while the quantization has a topological origin. The latter was first discovered
in particular situations [16], and it has been proved for more general models using non-
commutative geometry [17] and the index of Fredholm operators [18] (see [19] for a review).

In a semi-infinite system where the particle is confined in a half plane with Hamiltonian
H0 + Vω + U� (here (x, y) belongs to R

2) the spectrum includes all energies in
[
B
2 ,+∞[

. The
lower edge of the spectrum is between B

2 − V0 and B
2 and in its vicinity the spectrum is pure

point (this follows from the techniques in [11]). For energies in intervals inside the gaps of
the bulk Hamiltonian H0 + Vω the situation is completely different. One can show that the
average velocity (ψ, vyψ) in the y direction of an assumed eigenstate ψ does not vanish,
but since the velocity vy is the commutator between y and the Hamiltonian, this implies that
the eigenstate cannot exist, and that therefore the spectrum is purely continuous [5, 20]. In
fact, Mourre theory has been suitably applied to prove that the spectrum is purely absolutely
continuous [6, 7]. These works put on a rigorous basis the expectation that, because of the
chiral nature of the boundary currents, the states remain extended in the y direction even
in the presence of disorder [2]. The same sort of analysis shows that if the y direction is
made periodic of length L, the same energy intervals have discrete eigenstates which carry a
current that is O(1)—say positive—with respect to L [6]. Furthermore one can show that the
eigenvalue spacing is of order O(L−1) [21].

The nature of the spectrum for a semi-infinite system for intervals inside the Landau bands
of the bulk Hamiltonian

⋃
ν�0

[(
ν + 1

2

)
B − V0,

(
ν + 1

2

)
B + V0

]
has not yet been elucidated.

For the finite system on a cylinder with two boundaries the spectrum consists of finitely
degenerate isolated eigenvalues. In [22], the results of [5, 6] for energy intervals inside the gaps
of the bulk Hamiltonian are extended to the present two boundary system. The eigenvalues
can be classified into two sets distinguished by the sign of their associated current1. These
currents are uniformly positive or uniformly negative with respect to L. For this result to hold
it is important to take the circumference and the length of the cylinder both of the order L.
1 In principle the physical current is L−1(ψ, vyψ), but here we will call the current the average velocity (ψ, vyψ).
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In the present work, we study the currents of the eigenstates for eigenvalues in the interval
�ε = ]

B
2 + ε, B2 +V0

[
where ε is a small positive number independent of L. We limit ourselves

to the first band to keep the discussion simpler. The content of our main result (theorem 1) is
the following. Given ε, for L large enough there is an ensemble of realizations of the random
potential with probability 1 − O(L−s ) for which the eigenvalues of Hω can be classified into
three sets that we call��,�r and�b. The eigenstates of�r (resp. �l) have uniformly positive
(resp. negative) currents with respect to L, while those of �b have a current of the order of
O(e−γB(logL)2

)
. The number of eigenvalues in �α (α = �, r) is O(L) while that in �b is

O(L2). This classification of eigenvalues leads to a well-defined notion of extended edge
and localized bulk states. The edge states are those which belong to �α (α = �, r) and are
extended in the sense that they have a current of order O(1). The bulk states are those which
belong to�b and are localized in the sense that their current is infinitesimal. The energy levels
of the extended and localized states are intermixed in the same energy interval. See also [23]
for a short review on spectral properties of systems defined on a cylinder.

Let us explain the mechanism that is at work. When the random potential is removed
Vω = 0 in (1.1) the eigenstates with energies away from B

2 are extended in the y direction
and localized in the x direction at a finite distance from the boundaries. Their energies form a
sequence of ‘edge levels’ and have a spacing of the order of O(L−1). When the potential of
one impurity is added to H0 it typically creates a localized bound state with energy between
the Landau levels. Suppose now that (i) a coupling constant in the impurity potential is
fine tuned as a function of L so that the energy of the impurity level stays at a distance
greater than L−p from the edge levels, (ii) the position of the impurity is at a distance D
from the boundaries. Then the mixing between the localized bound state and the extended
edge states is controlled in second-order perturbation theory by the parameter Lp e−cBD2

.
Therefore, one expects that bound states of impurities that haveD � (logL)1/2 are basically
unperturbed and have an infinitesimal current. On the other hand bound states coming from
impurities with D � (logL)1/2 will mix with edge states. Note that even for impurities with
D � (logL)1/2 the coupling constant (equivalently the impurity level) has to be fine tuned as
a function of L. Indeed, for a coupling constant with a fixed value the energy of the impurity
level is independent of L, and surely for L large enough the energy difference between the
impurity and the edge levels becomes much smaller thanO(e−cBD2)

. Remarkably for a random
potential, the absence of resonance is automatically achieved with large probability and no fine
tuning is needed: this is why localized bulk states survive. We have analysed this mechanism
rigorously for a model (see also [2]) where there are no impurities in a layer of thickness
(logL) along the boundary. Then the edge levels are basically non-random and the typical
spacing between current-carrying eigenvalues is easily controlled. Of course it is desirable
to allow for impurities close to the boundary but then the edge levels become random and
some further analysis is needed. However, we expect that the same basic mechanism operates
because the typical spacing between edge levels should still be O(L−1). In connection with
the discussion above we mention that for a semi-infinite system the bound state of an impurity
at any fixed distance from the boundary turns into a resonance. A similar situation has been
analysed in [24].

We note that the spectral region close to B
2 that is left out in our theorem is precisely that

where resonances between edge and bulk states may occur because edge states become very
dense. It is not clear what is the connection with the divergence of the localization length of
the infinite system at the band centre.

In the present work we have shown that in quantum Hall samples there exist well-defined
notions of extended edge states (current of O(1)) and localized bulk states (infinitesimal
current). Instead of classifying the energy levels according to their current one could try
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to use level statistics. We expect that the localized bulk states have Poissonian statistics
whereas the extended edge states should display a level repulsion. In fact such a strong form
of level repulsion is proved in [21] for energies in the gap of the bulk Hamiltonian where
only extended edge states exist. It is interesting to observe that in the present situation both
kinds of states have intermixed energy levels. In the usual Schrödinger operators (e.g. the
Anderson model on a 3D cubic lattice) it is accepted (but not proved) that they are separated
by a well-defined mobilty edge (results in this direction have been obtained recently [25] under
a suitable hypothesis). The states at the band edge are localized in the sense that the spectrum
is dense pure point for the infinite lattice and has Poisson statistics for the finite system [26].
At the band centre the states are believed to be extended in the sense that the spectrum is
absolutely continuous for the infinite lattice and has the statistics of the Gaussian orthogonal
ensemble for the finite lattice.

Other ways of formulating the notion of edge states have been proposed in different
contexts. In [27] the authors consider a clean system with a novel kind of chiral boundary
conditions. The Hilbert space then separates into two parts corresponding to edge and bulk
states. The bulk states have exactly the Landau energy and the edge states a linear dispersion
relation; the distinction between them being sharp because of the special nature of boundary
conditions. It would be interesting to extend this definition to disordered systems. Recently
in [28] (see also [29]) another approach has been used in the context of magnetic billards.
The authors study a magnetic billiard with mixed boundary conditions with mixing parameter

 interpolating between Dirichlet and Neumann boundary conditions. They look at the
sensibility of the eigenstates and eigenvalues under the variation of 
 and define in this way
an edge state as a state that depends strongly on 
. Let us note that our notion of edge state
as well as the other ones all share the feature that an edge state carries a substantial current.

The characterization of the spectrum of (1.1) proposed here also has a direct relevance
to the Hall conductivity of the many-electron (non-interacting) system. In the formulation
advocated by Halperin [2] the Hall conductivity is computed as the ratio of the net equilibrium
current and the difference of chemical potentials between the two edges. Consider the many-
fermion state �(µ�,µr ,EF ) obtained by filling the levels of Hω (one particle per state) in
�� ∩ [B2 + ε, µ�

]
,�r ∩ [B2 + ε, µr

]
and �b ∩ [B2 + ε,EF

]
with B

2 + ε < µ� < EF < µr <
B
2 + V0. The total current I (µ�, µr ,EF ) of this state—a stationary state of the many particle
Hamiltonian—is given by the sum of the individual physical currents of the filled levels (given
by L−1(ψ, vyψ)). From the estimates (2.16) and (2.18) in theorem 1∑

k

J �k +
∑
k

J rk +
∑
β

Jβ =
∑
k

J �0k +
∑
k

J r0k + O(e−(logL)2L2) (1.2)

and from (2.10) we get

1

L

∑
k

J r0k = 1

2π

∫ µr

B
2 +ε

dE + O(L−1) (1.3)

1

L

∑
k

J �0k = 1

2π

∫ B
2 +ε

µ�

dE + O(L−1). (1.4)

It follows that to leading order

I (µ�, µr,EF ) � 1

2π
(µr − µ�). (1.5)

In (1.5) the Hall conductance is equal to 1 (this is because we have considered only the first
band). When µ� and µr vary the density of particles in the state, �(µ�,µr ,EF ) does not
change since the number of levels in �α (α = �, r) is of order O(L). However, if EF is
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increased the particle density (and thus the filling factor) increases since the number of levels
in�b is of order O(L2), but the Hall conductance does not change and hence has a plateau. In
other words the edge states contribute to the Hall conductance but not to the density of states
of the sample in the thermodynamic limit.

In a more complete theory one should also take into account currents possibly flowing in
the bulk due to the adiabatic switching of an external electric field, an issue that is beyond the
scope of the present analysis. A related problem is the relationship between the conductance
in the present picture, defined through (1.5), and that using the Kubo formula (see [30–32]).

The precise definition of the model and the statement of the main result (theorem 1) are
the subject of the next section.

2. The structure of the spectrum

We consider the family of random Hamiltonians (1.1) acting on the Hilbert space L2
(
R ×[−L

2 ,
L
2

])
with periodic boundary conditions along y,ψ

(
x,−L

2

) = ψ
(
x, L2

)
. In the Landau

gauge the kinetic term of (1.1) is

H0 = 1
2p

2
x + 1

2 (py − Bx)2 (2.1)

and has infinitely degenerate Landau levels σ(H0) = {(
ν + 1

2

)
B; ν ∈ N

}
. We will make

extensive use of explicit pointwise bounds, proved in appendix A, on the integral kernel of the
resolvent R0(z) = (z −H0)

−1 with periodic boundary conditions along y.
The confining potentials modelling the two edges at x = −L

2 and x = L
2 are assumed to

be strictly monotonic, differentiable and such that

c1

∣∣∣∣x +
L

2

∣∣∣∣
m1

� U�(x) � c2

∣∣∣∣x +
L

2

∣∣∣∣
m2

for x � −L
2

(2.2)

c1

∣∣∣∣x − L

2

∣∣∣∣
m1

� Ur(x) � c2

∣∣∣∣x − L

2

∣∣∣∣
m2

for x � L

2
(2.3)

for some constants 0 < c1 < c2 and 2 � m1 < m2 < ∞. Recall that U�(x) = 0 for x � −L
2

and Ur(x) = 0 for x � L
2 . We could allow steeper confinements but the present polynomial

conditions turn out to be technically convenient.
We assume that each impurity is the source of a local potential V ∈ C2, 0 � V (x, y) �

V0 < ∞, suppV ⊂ B
(
0, 1

4

)
, and that impurities are located at the sites of a finite lattice


 = {
(n,m) ∈ Z

2; n ∈ [−L
2 + logL, L2 − logL

]
,m ∈ [−L

2 ,
L
2

]}
. The random potential Vω

has the form

Vω(x, y) =
∑

(n,m)∈

Xn,m(ω)V (x − n, y −m) (2.4)

where the coupling constants Xn,m are i.i.d. random variables with common density h ∈
C2([−1, 1]) that satisfies ‖h‖∞ < ∞, supph = [−1, 1]. We will denote by P
 the product
measure defined on the set of all possible realizations ω ∈ �
 = [−1, 1]
. Clearly for
any realization we have |Vω(x, y)| � V0. Furthermore, it will be assumed that the random
potential is weak in the sense that 4V0 < B.

We will think of our system as being constituted of three pieces corresponding to the bulk
system with the random Hamiltonian

Hb = H0 + Vω (2.5)

and the left and right edge systems with non-random Hamiltonians

Hα = H0 + Uα α = �, r. (2.6)
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All the Hamiltonians considered above have periodic boundary conditions along the y direction
and are essentially self-adjoint on C∞

0

(
R × [−L

2 ,
L
2

])
. For each realization ω and size L the

spectrum σ(Hω) of (1.1) (it depends on L) consists of isolated eigenvalues of finite multiplicity.
In order to state our main result characterizing these eigenvalues we first have to describe the
spectra of (2.5) and (2.6).

Let us begin with the edge Hamiltonians (2.6). Here we state their properties without
proofs and refer the reader to [5, 20] for more details. Since the edge Hamiltonians Hα
commute with py , they decomposed into a direct sum:

Hα =
⊕∑

k∈ 2π
L

Z

Hα(k) =
⊕∑

k∈ 2π
L

Z

[
1

2
p2
x +

1

2
(k − Bx)2 + Uα

]
. (2.7)

For each k the one-dimensional HamiltonianHα(k) has a compact resolvent, thus it has discrete
eigenvalues and by standard arguments one can show that they are not degenerate. If the
y direction would be infinitely extended, k would vary over the real axis and the eigenvalues of
Hα(k)would form spectral branches εαν (k̂), k̂ ∈ R labelled by the Landau level index ν. These
spectral branches are strictly monotone, entire functions with the properties ε�ν(−∞) = +∞,
ε�ν(+∞) = (

ν + 1
2

)
B and εrν(−∞) = (

ν + 1
2

)
B, εrν(+∞) = +∞. Here because of the periodic

boundary conditions the set of k values is discrete so that the spectrum of Hα

σ(Hα) =
{
Eανk; ν ∈ N, k ∈ 2π

L
Z

}
(2.8)

consists of isolated points on the spectral branchesEανk = εαν (k), k ∈ 2π
L

Z. The corresponding
eigenfunctionsψανk have the form

ψανk(x, y) = 1√
L

eikyϕανk(x) (2.9)

with ϕανk the normalized eigenfunctions of the one-dimensional Hamiltonian Hα(k). By
definition, the current of the state ψανk in the y direction is given by the expectation value of
the velocity vy = py − Bx,

J ανk = (
ψανk, vyψ

α
νk

) =
∫

R

∣∣ϕανk(x)∣∣2 (k − Bx) dx = ∂k̂ε
α
ν (k̂)

∣∣∣
k̂= 2πm

L

(2.10)

where the last equality follows from the Feynman–Hellman theorem. From (2.10) we note
that for any ε > 0, one can find j (ε) > 0 and L(ε) such that for L > L(ε) the states of the
two branches ν = 0, α = �, r with energiesEα0k � 1

2B + ε satisfy

J �0k � −j (ε) < 0 J r0k � j (ε) > 0. (2.11)

In other words the eigenstates of the edge Hamiltonians carry an appreciable current. The
spacing of two consecutive eigenvalues greater than 1

2B + ε satisfies∣∣∣Eα0 2π(m+1)
L

− Eα
0 2πm

L

∣∣∣ > j(ε)

L
α = �, r. (2.12)

Note that these observations extend to other branches but j (ε) and L(ε) are not uniform with
respect to the index ν. In the rest of the paper we limit ourselves to ν = 0 for simplicity.
On the other hand the spacing between the energies of σ(H�) and σ(Hr) is a priori arbitrary.
We assume that the confining potentials U� and Ur are such that the following hypothesis is
fulfilled.
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Hypothesis 1. Fix any ε > 0 and let�ε = [
1
2B + ε, 1

2B +V0
]
. There exist L(ε) and d(ε) > 0

such that for all L > L(ε)

dist (σ (H�) ∩�ε, σ(Hr) ∩�ε) � d(ε)

L
. (2.13)

This hypothesis is important because a minimal amount of non-degeneracy between the
spectra of the two edge systems is needed in order to control backscattering effects induced
by the random potential. Indeed, in a system with two boundaries backscattering favours
localization and has a tendency to destroy currents. This hypothesis can easily be realized by
taking non-symmetric confining potentialsU� andUr . In a more realistic model with impurities
close to the edges one expects that it is automatically satisfied with a large probability.

Now we describe the spectral properties of the bulk random Hamiltonian (2.5). From
the bound (A.5) on the kernel of R0(z) and the fact that Vω is bounded with compact support
we can see that Vω is relatively compact w.r.t. H0, thus σess(Hb) = {(

ν + 1
2

)
B; ν ∈ N

}
.

Since |Vω(x, y)| � V0 < B the eigenvalues Ebβ of Hb are contained in Landau bands⋃
ν�0

[(
ν + 1

2

)
B − V0,

(
ν + 1

2

)
B + V0

]
. We will assume

Hypothesis 2. Fix any ε > 0. There exist µ(ε) a strictly positive constant and L(ε) such
that for all L > L(ε) one can find a set of realizations of the random potential �′


 with
P
(�

′

) � 1 − L−θ , θ > 0, with the property that if ω ∈ �′


 the eigenstates corresponding
to Ebβ ∈ σ(Hb) ∩�ε satisfy∣∣ψbβ(x, ȳβ)∣∣ � e−µ(ε)L ∣∣∂yψbβ(x, ȳβ)∣∣ � e−µ(ε)L (2.14)

for some ȳβ depending on ω and L.

Since Vω is random we expect that wavefunctions with energies in�ε (not too close to the
Landau levels where the localization length diverges) are exponentially localized on a scale
O(1)with respect to L. Inequalities (2.14) are a weaker version of this statement and have been
checked for the special case where the random potential is a sum of rank-one perturbations
[33] using the methods of Aizenman and Molchanov [34] (see for example [14] where the
case of point impurities is treated by these methods). Presumably one could adapt existing
techniques for multiplicative potentials to our geometry, to prove hypothesis (H2) at least
for energies close to the band tail B

2 + V0. One also expects that µ(ε) → 0 as ε → 0. The
main physical consequence of (H2) (as shown in section 5) is that a state satisfying (2.14)
does not carry any appreciable current (contrary to the eigenstates of Hα) in the sense that
J bβ = (

ψbβ, vyψ
b
β

) = O(e−µ(ε)L).
We now state our main result.

Theorem 1. Fix ε > 0 and assume that (H1) and (H2) are fulfilled. Assume B > 4V0.
Let p � 7 and s = min(θ, p − 6). Then there exists a numerical constant γ > 0 and an
L(ε, p,B, V0) such that for all L > L(ε, p,B, V0) one can find a set �̂
 of realizations of
the random potential with P
(�̂
) � 1 − 3L−s such that for any ω ∈ �̂
, σ (Hω) ∩ �ε is
the union of three sets �� ∪ �b ∪ �r , each depending on ω and L, and characterized by the
following properties:

(a) Eαk ∈ �α (α = �, r) are a small perturbation of Eα0k ∈ σ(Hα) ∩�ε with∣∣Eαk − Eα0k

∣∣ � e−γB(logL)2 α = �, r. (2.15)

(b) For Eαk ∈ �α the current J αk of the associated eigenstate satisfies∣∣J αk − J α0k
∣∣ � e−γB(logL)2 α = �, r. (2.16)
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(c) �b contains the same number of energy levels as σ(Hb) ∩�ε and

dist(�b,�α) � L−p+1 α = �, r. (2.17)

(d) The current associated with each level Eβ ∈ �b satisfies

|Jβ | � e−γB(logL)2 . (2.18)

The proof of the theorem is organized as follows. In section 3 we set up a decoupling
scheme by which we express the resolvent of Hω as an approximate sum of those of the edge
and bulk systems. Parts (a) and (c) of theorem 1 are proved in section 4. First we compute
approximations for the spectral projections ofHω in terms of the projectors P

(
Eα0k

)
ofHα and

Pb(�̄) of Hb (proposition 1). This is done for realizations of the disorder such that the levels
ofHb are not ‘too close’ to those ofHα. We then show that these realizations are typical (have
large probability) thanks to a Wegner estimate (proposition 2). Parts (b) and (d) are proved
in section 5 by estimating currents in terms of norms of differences between projectors. The
appendices contain some technical estimates.

3. Decoupling of the bulk and the edge systems

The resolvent R(z) = (z − Hω)
−1 can be expressed, up to a small term, as a sum

of the resolvents of the bulk system Rb(z) = (z − Hb)
−1 and the two edge systems

Rα(z) = (z − Hα)
−1 (α = �, r). Here this will be achieved by a decoupling formula

developed in other contexts [35, 36]. We set D = logL and introduce the characteristic
functions

J̃ �(x) = χ]−∞,− L
2 + D

2 ](x) J̃ b(x) = χ[− L
2 + D

2 ,
L
2 −D

2 ](x) J̃ r(x) = χ[− L
2 + D

2 ,+∞[(x)

(3.1)

We will also use three boundedC∞(R) functions |Ji(x)| � 1, i ∈ I ≡ {�, b, r}, with bounded
first and second derivatives supx

∣∣∂nx Ji(x)∣∣ � 2, n = 1, 2, and such that

J�(x) =
{

1 if x � −L
2 + 3D

4

0 if x � −L
2 + 3D

4 + 1
Jb(x) =

{
1 if |x| � L

2 − D
4

0 if |x| � L
2 − D

4 + 1

Jr(x) =
{

1 if x � L
2 − 3D

4

0 if x � L
2 − 3D

4 − 1.

(3.2)

For i ∈ I we haveHωJi = HiJi thus

(z−Hω)
∑
i∈I

JiRi(z)J̃ i =
∑
i∈I
(z−Hi)JiRi(z)J̃ i = 1 − K(z) (3.3)

where

K(z) =
∑
i∈I

Ki(z) =
∑
i∈I

1

2

[
p2
x, Ji

]
Ri(z)J̃ i . (3.4)

To obtain the second equality one commutes (z − Hi) and Ji and then uses the identity∑
i∈I JiJ̃ i = ∑

i∈I J̃ i = 1. From (3.3) we deduce the decoupling formula

R(z) =
(∑
i∈I

JiRi(z)J̃ i

)
(1 − K(z))−1. (3.5)

The main result of this section is an estimate of the operator norm of K(z). In particular
it will assure ‖K(z)‖ < 1.
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Lemma 1. Let Re z ∈ �ε such that dist(z, σ (H�) ∪ σ(Hr) ∪ σ(Hb)) � e− B
512 (logL)2 . Then for

L large enough there exists a constant C(B, V0) > 0 independent of L such that

‖K(z)‖ � ε−1C(B, V0)L e− B
512 (logL)2 . (3.6)

Proof. Computing the commutator in the definition ofKi(z) and applying the second resolvent
formula we have

Ki(z) = − 1
2

(
∂2
x Ji
)
Ri(z)J̃ i − (∂xJi)∂xRi(z)J̃ i

= − 1
2

(
∂2
x Ji
)
R0(z)J̃ i − 1

2

(
∂2
x Ji
)
R0(z)WiRi(z)J̃ i

− (∂xJi)∂xR0(z)J̃ i − (∂xJi)∂xR0(z)WiRi(z)J̃ i (3.7)

where we have set W� = U�,Wb = Vω and Wr = Ur . From the triangle inequality and
‖Ri(z)‖ = dist(z, σ (Hi))−1 we obtain

‖Ki(z)‖ � 1
2

∥∥(∂2
x Ji
)
R0(z)J̃ i

∥∥ + 1
2

∥∥(∂2
x Ji
)
R0(z)Wi

∥∥dist(z, σ (Hi))−1

+ ‖(∂xJi) ∂xR0(z)J̃ i‖ + ‖(∂xJi)∂xR0(z)Wi‖ dist(z, σ (Hi))−1. (3.8)

To estimate the operator norms on the right-hand side it is sufficient to bound them by the
Hilbert–Schmidt norms ‖ · ‖2. Using bounds (A.5) on the kernels of ∂nxR0(z) for n = 0, 1,
and the properties of the functions Ji, J̃ i we obtain∥∥(∂2−n

x Ji
)
∂nxR0(z)J̃ i

∥∥2

2 =
∫

supp ∂2−n
x Ji

dx
∣∣∂2−n
x Ji(x)

∣∣2 ∫
supp J̃ i

dx′ ∣∣∂nx R0(x, x′; z)∣∣2
� 4C2

n(z, B)

∫
supp ∂2−n

x Ji

dx
∫

supp J̃ i

dx′ e− B
4 (x−x′)2

� 4C2
n(z, B) e− B

8 (
D
4 +1)2

∫
supp ∂2−n

x Ji

dx
∫

R×[−L/2,L/2]
dx′ e− B

8 (x−x′)2

� 16

√
π

B
C2
n(z, B)L

2 e− B
128D

2
. (3.9)

For the norms involving the potentialsWi we obtain in a similar way∥∥∂2−n
x Ji∂

n
x R0(z)Wi

∥∥2

2 =
∫

supp ∂2−n
x Ji

dx
∣∣∂2−n
x Ji(x)

∣∣2 ∫
suppWi

dx′ ∣∣∂αx R0(x, x′; z)∣∣2 |Wi(x′)|2

� 4C2
n(z, B) e− B

128D
2

∫
supp ∂2−n

x Ji

dx
∫

suppWi

dx′ e− B
8 (x−x′)2 |Wi(x′)|2. (3.10)

It is clear that since Vω is bounded, and U�,Ur do not grow faster than polynomials,
the double integral on the right-hand side of the last inequality is bounded above by
L2 times a constant depending only on B and V0. From this result, (3.8), (3.9) and
dist(z, σ (H�) ∪ σ(Hr) ∪ σ(Hb)) � e− B

512 (logL)2 we obtain (C̃(B, V0) a constant independent
of L)

‖Ki(z)‖ � C̃(B, V0)ε
−1L e− B

512 (logL)2 (3.11)

where we used the expression for Cn(z, B) in appendix A and the fact that Re z ∈ �ε. �

4. Estimates of eigenprojectors of Hω

In this section we use the decoupling formula (3.5) to give deterministic estimates for the
difference between projectors of Hω and Hb,H� and Hr . We then combine this information
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with a probabilistic estimate (Wegner estimate) to deduce that the spectrum ofHω is the union
of the three sets ��, �r and �b satisfying parts (a) and (c) of theorem 1.

Proposition 1. Assume that (H1) holds. Take p � 7 and any e− B
512 (logL)2 < ρ < d(ε)

2 L−p.
For L > L(ε) let �′′


 be the set of realizations of the random potential such that for each
ω ∈ �′′


 dist
(
σ(Hb) ∩�ε,E

α
0k

)
� d(ε)L−p for all Eα0k ∈ �ε, α = �, r . Then

(i) If P
(
Eα0k

)
is the eigenprojector of Hα associated with the eigenvalue Eα0k ∈ �ε and Pαk

the eigenprojector of Hω for the intervals Iαk = [
Eα0k − ρ,Eα0k + ρ

]
we have∥∥Pαk − P

(
Eα0k

)∥∥ � ε−1C ′(B, V0)L e− B
512 (logL)2 . (4.1)

(ii) Let �̄ ⊂ �ε be an interval such that dist(�̄, σ (H�) ∪ σ(Hr)) = d(ε)

2 L−p. If Pb(�̄) is
the eigenprojector of Hb for the interval �̄ and P(�̄) the eigenprojector of Hω for the
interval �̄ we have

‖P(�̄)− Pb(�̄)‖ � ε−3C ′(B, V0)L
p e− B

512 (logL)2 . (4.2)

Proof. We start by proving (4.1) for α = r . The case α = � is identical. From the decoupling
formula we have

R(z)− Rr(z) =
(∑
i∈I

JiRi(z)J̃ i

)( ∞∑
n=1

K(z)n
)

− (1 − Jr)Rr(z)

− JrRr(z)(1 − J̃ r ) + J�R�(z)J̃ � + JbRb(z)J̃ b. (4.3)

Let � be a circle of radius ρ in the complex plane, centred at Er0k. Because of (H1) and
dist

(
σ(Hb) ∩�ε,E

r
0k

)
� d(ε)L−p, Rb(z) and R�(z) have no poles in �. Moreover the only

pole of Rr(z) is precisely Er0k. Thus integrating (4.3) along the circle �

P rk − P
(
Er0k

) = 1

2π i

∮
�

(∑
i∈I

JiRi(z)J̃ i

) ∞∑
n=1

K(z)n dz

− (1 − Jr)P
(
Er0k

)− JrP
(
Er0k

)
(1 − J̃ r ). (4.4)

We proceed to estimate the norms of the three contributions on the right-hand side of (4.4).
The norm of the first term is smaller than

ρ

(∑
i∈I

sup
z∈�

‖Ri(z)‖
)

supz∈� ‖K(z)‖
1 − supz∈� ‖K(z)‖ � 6ε−1C(B, V0)L e− B

512 (logL)2 . (4.5)

Indeed, for i = r we have supz∈�‖Rr(z)‖ = ρ−1 by construction. For i = �, b we have
supz∈�‖Ri(z)‖ < 2

d(ε)
Lp. Since ρ < d(ε)

2 L−p we note that in all three cases (i ∈ I)
ρ supz∈�‖Ri(z)‖ � 1. Furthermore, since ρ > e− B

512 (logL)2 , using lemma 1 we get (4.5). To
estimate the second term in (4.4) we note that by the second resolvent formula

P
(
Er0k

)
(
z− Er0k

) = (z−H0)
−1Pr

(
Er0k

)
+ (z−H0)

−1Ur
P
(
Er0k

)
(
z− Er0k

) . (4.6)

Integrating (4.6) along � we obtain the identity

P
(
Er0k

) = (
Er0k −H0

)−1
UrP

(
Er0k

)
(4.7)

this implies∥∥(1 − Jr)P
(
Er0k

)∥∥ �
∥∥(1 − Jr)R0

(
Er0k

)
Ur
∥∥ �

∥∥(1 − Jr)R0
(
Er0k

)
Ur
∥∥

2

=
{∫

dx|1 − Jr(x)|2
∫

dx′ ∣∣R0
(
x, x′;Er0k

)
Ur(x

′)
∣∣2}1/2

(4.8)
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since the distance (in the x direction) between the supports of (1 − Jr) and Ur is greater than
D
2 + 1 we can proceed in a similar way as in the estimate of (3.10) to obtain∥∥(1 − Jr)P

(
Er0k

)∥∥ � ε−1C̄(B)L e− B
64 (logL)2 (4.9)

where C̄(B) is a constant depending only on B. For the third term in (4.4) we use the adjoint
of (4.7)

P
(
Er0k

) = P
(
Er0k

)
Ur
(
Er0k −H0

)−1
(4.10)

to get ∥∥JrP (Er0k) (1 − J̃ r )
∥∥ �

∥∥UrR0
(
Er0k

)
(1 − J̃ r )

∥∥ (4.11)

from which we obtain the same bound as in (4.9). Combining this result with (4.4), (4.5),
(4.9) we obtain (4.1) in the proposition.

Let us now sketch the proof of (4.2). From the decoupling formula we have

R(z)− Rb(z) =
(∑
i∈I

JiRi(z)J̃ i

)( ∞∑
n=1

K(z)n
)

− (1 − Jb)Rb(z)

− JbRb(z)(1 − J̃ b) + J�R�(z)J̃ � + JrRr(z)J̃ r . (4.12)

Given an interval �̄ ⊂ �ε such that dist(�̄, σ (H�)∪σ(Hr)) = d(ε)

2 L
−p , we choose a circle �̄

in the complex plane with diameter equal to |�̄|. Then if we integrate over �̄ the last two terms
on the right-hand side do not contribute while the second and third ones give (1 − Jb)Pb(�̄)

and JbPb(�̄)(1 − Jb). Therefore

‖P − Pb(�̄)‖ � |�̄|
(∑
i∈I

sup
z∈�̄

‖Ri(z)‖
)

supz∈�̄ ‖K(z)‖
1 − supz∈�̄ ‖K(z)‖

+ ‖(1 − Jb)Pb(�̄)‖ + ‖JbPb(�̄)(1 − J̃ b)‖. (4.13)

From lemma 1, |�̄| < d(ε)L−1 and supz∈�̄‖Ri(z)‖ < 2
d(ε)
Lp the first term is bounded above

by

12ε−1C(B, V0)L
p e− B

512 (logL)2 . (4.14)

In order to estimate the second norm in (4.13) we note that (in the same way as in (4.6), (4.7))

Pb(�̄) =
∑
Ebβ∈�̄

R0
(
Ebβ
)
VωPb

(
Ebβ
)

(4.15)

thus

‖(1 − Jb)Pb(�̄)‖ �
∑
Ebβ∈�̄

∥∥(1 − Jb)R0
(
Ebβ
)
Vω
∥∥

2
. (4.16)

Each term of the sum can be bounded in a way similar to (3.10), and since the number of terms
in the sum is equal to TrPb(�̄) we get

‖(1 − Jb)Pb(�̄)‖ � ε−1C(B, V0)L e− B
64 (logL)2 TrPb(�̄)

� 2ε−3c(B)2C(B, V0)V
2
0 L

5 e− B
64 (logL)2 . (4.17)

The second inequality follows from lemma 4 in appendix B (where we need B > 4V0). For
‖JbPb(�̄)(1− J̃ b)‖ one uses the adjoint of identity (4.15) to obtain the same result. The result
(4.2) of the proposition then follows by combining (4.13), (4.14) and (4.17). �



6350 C Ferrari and N Macris

In appendix B we adapt the method of [10] to our geometry to get the following Wegner
estimate.

Proposition 2. Let B � 4V0 and E ∈ �ε

P
 (dist(σ (Hb),E) < δ) � 4c(B)‖h‖∞δε−2V0L
4. (4.18)

Proof of theorem 1, parts (a) and (c). Letω ∈ �′′

 where�′′


 is the set given in proposition 1.
Since for L large enough the right-hand side of (4.1) is strictly smaller than 1, the two projectors
necessarily have the same dimension. Therefore, σ(Hω) ∩ Iαk contains a unique energy level
Eαk for each Iαk of radius ρ. In particular, by taking the smallest value ρ = e− B

512 (logL)2 we get
(2.15). The number of such levels is O(L) since they are in one-to-one correspondence with
the energy levels of Hα. The sets �α of theorem 1 are precisely

�α =
⋃
k

(
σ(Hω) ∩ Iαk ∩�ε

)
α = �, r. (4.19)

The set of all other eigenvalues in σ(Hω) ∩ �ε defines �b and is necessarily contained in
intervals �̄ such that dist(�̄, σ (H�) ∪ σ(Hr)) = d(ε)

2 L
−p . In view of (2.15) this implies

(2.17). Since the two projectors in (4.2) necessarily have the same dimension, the number of
eigenstates in �b is the same as that of σ(Hb) ∩�ε. It remains to estimate the probability of
the set �′′


. The realizations of the complementary set are such that for at least one Eα0k ∈ �ε

dist
(
σ(Hb),E

α
0k

)
< d(ε)L−p (4.20)

but from proposition 2 this has a probability smaller than

4c(B)‖h‖∞d(ε)L−pε−2V0L
4 · O(L) (4.21)

where O(L) comes from the number of levels in [σ(H�) ∪ σ(Hr)] ∩ �ε. Thus for L large
enough

P
(�
′′

) � 1 − L6−p. (4.22)

We recall that p � 7. �

5. Estimates of currents

In this section we characterize the eigenvalues of Hω in terms of the current carried by the
corresponding eigenstates. This will yield parts (b) and (d) of theorem 2.

Proof of theorem 1, part (b). Let Eαk ∈ �α . By definition, the associated current is

J αk = Tr vyP αk (5.1)

and will be compared to that of ψα0k

J α0k = Tr vyP
(
Eα0k

)
. (5.2)

The difference between these two currents will be estimated by
∥∥Pαk − P

(
Eα0k

)∥∥. First
we observe that vyP αk is trace class. Indeed, vyP αk = vyP

α
k P

α
k with vyP αk bounded and∥∥Pαk ∥∥1 = TrPαk = 1∥∥vyP αk ∥∥2

1 �
∥∥vyP αk ∥∥2 �

∥∥Pαk v2
yP

α
k

∥∥ � 2
∥∥Pαk (Hω − Vω)P

α
k

∥∥ � 2Eαk + V0 (5.3)
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to get the second inequality one has simply added the positive terms to v2
y . Similarly∥∥vyP (Eα0k)∥∥2

1 �
∥∥vyP (Eα0k)∥∥2 �

∥∥P (Eα0k) v2
yP
(
Eα0k

)∥∥
� 2

∥∥P (Eα0k)HαP (Eα0k)∥∥ � 2Eα0k. (5.4)

The identity

Pαk − P
(
Eα0k

) = [
Pαk − P

(
Eα0k

)]2
+
[
Pαk − P

(
Eα0k

)]
P
(
Eα0k

)
+ P

(
Eα0k

) [
Pαk − P

(
Eα0k

)]
(5.5)

implies∣∣J αk − J α0k

∣∣ = ∣∣Tr vy
[
Pkα − P

(
Eα0k

)]∣∣ �
∣∣∣Tr vy

[
Pαk − P

(
Eα0k

)]2∣∣∣
+
∣∣Tr vy

[
Pαk − P

(
Eα0k

)]
P
(
Eα0k

)∣∣ +
∣∣Tr vyP

(
Eα0k

) [
Pαk − P

(
Eα0k

)]∣∣ . (5.6)

From (5.6), (5.3) and (5.4) we get∣∣J αk − J α0k

∣∣ � 2
(∥∥vyP αk ∥∥1 +

∥∥vyP (Eα0k)∥∥1

) ∥∥Pαk − P
(
Eα0k

)∥∥
� 2((B + 3V0)

1/2 + (B + 2V0)
1/2)

∥∥Pαk − P
(
Eα0k

)∥∥ . (5.7)

Combining this last inequality with (4.1) we get the result (2.16) of theorem 1. �

In order to prove part (d) of theorem 1 we need the following lemma.

Lemma 2. Fix ω ∈ �′

 the set of realizations in (H2). Let ψb1 , ψ

b
2 be two eigenstates of Hb

with eigenvalues Eb1 and Eb2 . Then∣∣(ψb1 , vyψb2 )∣∣ � 2
∣∣Eb1 − Eb2

∣∣L + e− µ(ε)

4 L. (5.8)

For ψb1 = ψb2 , E
b
1 = Eb2 , this shows that eigenstates of Hb do not carry any appreciable

current. The main idea of the proof sketched below is that vy is equal to the commutator
[−iy,Hb] up to a small boundary term.

Proof. The wavefunctions ψb1 and ψb2 are defined on R × [−L
2 ,

L
2

]
, are periodic along y and

are twice differentiable in y. Here we will work with periodized versions of these functions
where the y direction is infinite (but we keep the same notation). This allows us to shift
integrals over y from

[−L
2 ,

L
2

]
to [ȳ2, ȳ2 + L]. We have

(
ψb1 , vyψ

b
2

) =
∫

R

dx
∫ ȳ2+L

ȳ2

dy
[
ψb1 (x)

]∗
(−i∂y − Bx)ψb2 (x). (5.9)

An integration by parts yields

i
(
ψb1 , vyψ

b
2

) = 1

2

∫
R

dx
∫ ȳ2+L

ȳ2

dy
[
ψb1 (x)

]∗
y(−i∂y − Bx)2ψb2 (x)

− 1

2

∫
R

dx
∫ ȳ2+L

ȳ2

dy
[
(−i∂y − Bx)2ψb1 (x)

]∗
yψb2 (x) + B (5.10)

where B is a boundary term given by

B = i
L

2

∫
R

dx
[
(−i∂y − Bx)ψb1 (x, ȳ2)

]∗
ψb2 (x, ȳ2) +

[
ψb1 (x, ȳ2)

]∗
(−i∂y − Bx)ψb2 (x, ȳ2).

(5.11)
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We can add a periodized version of Vω and 1
2p

2
x to the kinetic energy operator in both terms

on the right-hand side of (5.10) and use that ψb1 and ψb2 are eigenfunctions of Hb to obtain

i
(
ψb1 , vyψ

b
2

) = (
Eb2 − Eb1

) ∫
R

dx
∫ ȳ2+L

ȳ2

dy y
[
ψb1 (x)

]∗
ψb2 (x) + B. (5.12)

From |y| � |ȳ2| + L � 2L and the Schwarz inequality we obtain∣∣(ψb1 , vyψb2 )∣∣ � 2L
∣∣Eb2 − Eb1

∣∣ + |B|. (5.13)

With the help of (C.6), (C.7) in appendix C we get

|B| � e− µ(ε)

4 L. (5.14)

This concludes the proof of (5.8). �

Proof of theorem 1, part (d). Let �̄ be an interval as in part (ii) of proposition 1. We consider
the maximal set of intervals Fk ⊂ �̄ such that |Fk| = e− B

1024 (logL)2 and dist(Fk,Fλ) �
4 e− B

512 (logL)2 , k �= λ. Since the number of gaps between the Fk in �̄ is less than e
B

1024 (logL)2 |�̄|
and |�̄| < d(ε)

L
, it follows from proposition 2 that

P
(�

′′′) ≡ P


(
ω ∈ �
 : σ(Hb) ∩ �̄ ⊂

⋃
k

Fk
)

� 1 − 16c(B)‖h‖∞ε−2V0L
4 e− B

512 (logL)2 e
B

1024 (logL)2 d(ε)

L

= 1 − 16c(B)‖h‖∞ε−2V0d(ε)L
3 e− B

1024 (logL)2 . (5.15)

Now suppose thatψβ is an eigenstate ofHω corresponding toEβ ∈ �̄. For a givenω ∈ �′′′

 one

can show thatEβ is necessarily included in one of the fattened intervals F̃k ≡ Fk + e− B
512 (logL)2 .

In order to check this it is sufficient to adapt the estimates (4.13) to (4.17) to the difference of
projectors ‖P(F̃k)−Pb(F̃k)‖. The main point is to check that with our choice of intervals one
is allowed to replace the circle �̄ by circles �̄k centred at the midpoint of Fk and of diameter
e− B

1024 (logL)2 + 2 e− B
512 (logL)2 . We do not give the details here. One finds

‖P(F̃k)− Pb(F̃k)‖ � ε−3C ′′(B, V0)L e− B
1024 (logL)2 . (5.16)

Therefore, P(F̃k)ψβ = ψβ for some k and we have

Jβ = (ψβ, vyψβ) = (ψβ, vyP (F̃k)ψβ) = (Pb(F̃k)ψβ, vyPb(F̃k)ψβ) + ([P(F̃k)
−Pb(F̃k)]ψβ, vyPb(F̃k)ψβ) + (ψβ, vy [P(F̃k)− Pb(F̃k)]ψβ). (5.17)

To estimate the first term on the right-hand side of (5.17) we use the spectral decomposition
in terms of eigenstates of Hb

Pb(F̃k)ψβ =
∑
Ebτ ∈F̃k

(
ψbτ , ψβ

)
ψbτ . (5.18)

We have

(Pb(F̃k)ψβ, vyPb(F̃k)ψβ) =
∑

Ebτ ,E
b
σ∈F̃k

(
ψβ,ψ

b
τ

) (
ψbσ ,ψβ

) (
ψbτ , vyψ

b
σ

)
. (5.19)

From lemmas 2 and 4 in appendix B we get

|(Pb(F̃k)ψβ, vyPb(F̃k)ψβ)| � (TrPb(Fk))24L e− B
1024 (logL)2 � 16c(B)4ε−4V 4

0 L
9 e− B

1024 (logL)2 .

(5.20)
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The second term on the right-hand side of (5.17) is estimated by the Schwarz inequality

([P(F̃k)− Pb(F̃k)]ψβ, vyPb(F̃k)ψβ)2 � ‖vyPb(F̃k)ψβ‖2‖P(F̃k)− Pb(F̃k)‖2

� 2(Pb(F̃k)ψβ, (Hb − Vω)Pb(F̃k)ψβ)‖P(F̃k)− Pb(F̃k)‖2

� (B + 3V0)‖P(F̃k)− Pb(F̃k)‖2. (5.21)

The third term is treated in a similar way

(ψβ, vy[P(F̃k)− Pb(F̃k)]ψβ)2 � ‖vyψβ‖2‖P(F̃k)− Pb(F̃k)‖2

� 2(ψβ, (Hω − Vω)ψβ)‖P(F̃k)− Pb(F̃k)‖2

� (B + 3V0)‖P(F̃k)− Pb(F̃k)‖2. (5.22)

The last estimate (2.18) of theorem 1 then follows from (5.16), (5.20), (5.21) and (5.22). �

Remark. The set �̂
 in theorem 1 may be taken equal to �′

 ∩ �
′′ ∩ �′′′


. This set has a
probability larger than 1 − 3L−s with s = min(θ, p − 6).
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Appendix A. Resolvent of the Landau Hamiltonian

The kernelR0(x, x′; z) of the resolventR0(z) = (z−H0)
−1 with periodic boundary conditions

along y can be expressed in terms of the kernel R∞
0 (x, x′; z) of the resolvent of the two-

dimensional Landau Hamiltonian defined on the whole plane R
2. Since the spectrum and

the eigenfunctions of H0 are exactly known, by writing down the spectral decomposition of
R0(x, x′; z) and applying the Poisson summation formula we get for z ∈ ρ(H0)

R0(x, x′; z) =
∑
m∈Z

R∞
0 (xy −mL, x ′y ′; z). (A.1)

The formula for R∞
0 (x, x′; z) is (see for example [14])

R∞
0 (x, x′; z) = B

2π
�(αz)U

(
αz, 1; B

2
|x − x′|2

)
e− B

4 |x−x′|2M(x, x′) (A.2)

where αz = (
1
2 − z

B

)
and

M(x, x′) = exp
( i

2
B(x + x ′)(y − y ′)

)
(A.3)

is the phase factor in the Landau gauge. In (A.2) the Landau levels appear as simple poles
of the Euler � function and U(−λ, b; ρ) is the logarithmic solution of the Kummer equation
(see equations (13.1.1) and (13.1.6) of [37])

ρ
d2U

dρ2
+ (b − ρ)

dU

dρ
+ λρ = 0. (A.4)

Lemma 3. If |Im z| � 1,Re z∈ ]
1
2B,

3
2B
[
and B

2 |x− x ′|2 > 1 then, for L large enough, there
exists Cn(z, B), n = 0, 1 independent of L such that∣∣∂nx R0(x, x′; z)∣∣ � Cn(z, B) e− B

8 (x−x′)2 (A.5)

where Cn(z, B) = CnB
1+ n

2 dist(z, σ (H0))
−1 with Cn a numerical positive constant.
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For our purposes we need only decay in the x direction as provided by the lemma but
in fact there is also a Gaussian decay in the y direction as long as |y − y ′| < L

2 . One can
also prove similar estimates when Re z is between higher Landau levels but the constant is
not uniform with respect to ν. Finally, we point out that this estimate does not hold for
B
2 |x − x′|2 < 1 because of the logarithmic singularity in the Kummer function for ρ → 0
(see also appendix C).

Proof. The proof relies on the estimate (6.10) of [14] which we state here for convenience.
For λ = x + iy,N − 1 < x < N (N � 1), b ∈ N and ρ > 1

|U(−λ, b; ρ)| � 2b+N−1ρx(b +N + |y|)N |�(−x)|
|�(−λ)| + e−(ρ−2)(ρ + 1 + |y|)N (b +N)!

|�(N − λ)| .
(A.6)

Using this estimate for N = 1, |y| < 1 and b = n together with �(1 − λ) = −λ�(−λ) we
have (C′

n a numerical constant)

|�(−λ)‖U(−λ, n + 1; ρ)| � C ′
nρ{�(−x) + |λ|−1}. (A.7)

From (A.7) if |Im z| � 1,Re z∈ ]
1
2B,

3
2B
[

and B
2 |x − x′|2 > 1 we deduce the estimate (C′′

n a
numerical constant)∣∣∣∣�(αz)U

(
αz, n + 1; B

2
|x − x′|2

)∣∣∣∣ � BC ′′
n dist(z, σ (H0))

−1|x − x′|2. (A.8)

From (A.8) for n = 0 and (A.1) we get

|R0(x, x′; z)| � 2BC ′′
0 dist(z, σ (H0))

−1 e− B
8 (x−x′)2

∑
m∈Z

e− B
8 (y−y′−mL)2 (A.9)

since |y − y ′| < L the last sum can be bounded by a constant, which yields (A.5) for n = 0.
To estimate the first derivative it is convenient to use the relation [37]

dU(−λ, 1; ρ)
dρ

= U(−λ, 1; ρ)− U(−λ, 2; ρ) (A.10)

which yields

∂xR
∞
0 (x, x′; z) = B

2
[(x − x ′) + i(y − y ′)]R∞

0 (x, x′; z)

−B(x − x ′)
B

2π
�(αz)U

(
αz, 2; B

2
|x − x′|2

)
e− B

4 |x−x′ |2M(x, x′). (A.11)

Using (A.8) to bound the two terms on the right-hand side of (A.11) we get

|∂xR∞
0 (xy, x

′y ′ −mL; z)| � B
3
2C ′′

1 dist(z, σ (H0))
−1 e− B

8 [(x−x′)2+(y−y′−mL)2] (A.12)

the result (A.5) for n = 1 then follows from (A.12) and (A.1). �

Appendix B. Bounds on the number of eigenvalues in small intervals

We first prove a deterministic lemma on the maximal number of eigenvalues of Hb belonging
to energy intervals I contained in �ε. Then we sketch the proof of proposition 2. The ideas
in this appendix come from the method used by Combes and Hislop to obtain the Wegner
estimate which gives the expected number of eigenvalues in I. Since lemma 4 does not appear
in [10] and we need to adapt the technique to our geometry we give some details below.
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We begin with some preliminary observations on the kernel P0(x, x′) of the projector
onto the first Landau level with periodic boundary conditions along y. Using the spectral
decomposition and the Poisson summation formula one gets

P0(xy, x
′y ′) =

∑
m∈Z

P∞
0 (xy −mL, x ′y ′) (B.1)

where

P∞
0 (x, x′) = B

2π
e− B

4 |x−x′|2 ei B2 (x+x′)(y−y′) (B.2)

is the projector on the first Landau level for the infinite plane. The above formula can also be
obtained by computing the residues of the poles of the� function. We observe thatV 1/2

i P0V
1/2
j

is trace class. Indeed it is the product of two Hilbert–Schmidt operators V 1/2
i P0 and P0V

1/2
j

and from the expression of the kernel (B.1) it is easily seen that (c(B) a constant independent
of L) ∥∥V 1/2

i P0V
1/2
j

∥∥
1 �

∥∥V 1/2
i P0

∥∥
2

∥∥P0V
1/2

j

∥∥
2 � c(B)V0. (B.3)

Lemma 4. Let I be any interval contained in �ε and Pb(I) the eigenprojector associated
with Hb. Then

TrPb(I) � 2ε−2c(B)2V 2
0 L

4. (B.4)

Proof. Let Q0 = 1 − P0 and E the middle point of I. Using Q0(H0 − E)Q0 � 0 and
Q0R0(E)Q0 � (B − V0)

−1Q0 we can write

Pb(I)Q0Pb(I) = Pb(I)Q0(H0 − E)1/2R0(E)(H0 − E)1/2Q0Pb(I)

� (B − V0)
−1Pb(I)(H0 − E)Q0Pb(I)

� (B − V0)
−1 [Pb(I)(Hb − E)Q0Pb(I)− Pb(I)VωQ0Pb(I)] (B.5)

and thus from ‖Pb(I)(Hb − E)‖ � |I |
2 , we get

‖Pb(I)Q0Pb(I)‖ � (B − V0)
−1

( |I |
2

+ V0

)
� 3V0

2(B − V0)
� 1

2
. (B.6)

In the last inequality we have assumed that B � 4V0. Using TrPb(I) = TrPb(I)P0Pb(I) +
TrPb(I)Q0Pb(I), TrPb(I)Q0Pb(I) � ‖Pb(I)Q0Pb(I)‖ TrPb(I) and (B.6) we obtain

TrPb(I) � 2 TrPb(I)P0Pb(I) = 2 TrP0Pb(I)P0. (B.7)

Now, from

dist

(
I,
B

2

)2

Pb(I)
2 �

(
Pb(I)

(
Hb − B

2

)
Pb(I)

)2

(B.8)

it follows that

TrP0Pb(I)P0 � ε−2 Tr

(
P0Pb(I)

(
Hb − B

2

)
Pb(I)

(
Hb − B

2

)
Pb(I)P0

)
= ε−2 Tr(P0VωPb(I)VωP0) � ε−2‖P0Vω‖2‖VωP0‖2 (B.9)

each Hilbert–Schmidt norm in (B.9) is bounded by c(B)V0L
2. This observation together with

(B.7) gives the result of the lemma. �

Let us now sketch the proof of proposition 2.
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Proof of proposition 2. Let E ∈ �ε and I = [E − δ,E + δ] for δ small enough (we require
that I is contained in �ε). By the Chebyshev inequality we have

P
 (dist(σ (Hb),E) < δ) = P
 (TrPb(I) � 1) � E
(TrPb(I)) (B.10)

where E
 is the expectation with respect to the random variables in 
. To estimate it we use
an intermediate inequality of the previous proof

E
(TrPb(I)) � 2ε−2
E
(TrP0VωPb(I)VωP0). (B.11)

Writing Vω,
 = ∑
i∈
 Xi(ω)Vi

TrP0VωPb(I)VωP0 =
∑

i,j∈
2

Xi(ω)Xj(ω)TrP0ViPb(I)VjP0

=
∑

i,j∈
2

Xi(ω)Xj(ω)TrV 1/2
j P0V

1/2
i V 1/2

i Pb(I)V
1/2

j . (B.12)

Since V 1/2
j P0V

1/2
i is trace class we can introduce the singular value decomposition

V
1/2
j P0V

1/2
i =

∞∑
n=0

µn(ψn, ·)φn (B.13)

where
∑∞

n=0 µn = ∥∥V 1/2
j P0V

1/2
i
∥∥

1. Then

TrV 1/2
j P0V

1/2
i V 1/2

i Pb(I)V
1/2

j =
∞∑
n=0

µn

(
φn, V

1/2
i Pb(I)V

1/2
j ψn

)

�
∞∑
n=0

µn
(
φn, V

1/2
i Pb(I)V

1/2
i φn

)1/2
(
ψn, V

1/2
j Pb(I)V

1/2
j ψn

)1/2

� 1

2

∞∑
n=0

µn

{(
φn, V

1/2
i Pb(I)V

1/2
i φn

)
+
(
ψn, V

1/2
j Pb(I)V

1/2
j ψn

)}
. (B.14)

An application of the spectral averaging theorem of [10] shows that

E


((
ψn, V

1/2
j Pb(I)V

1/2
j ψn

))
� ‖h‖∞2δ (B.15)

as well as for the term with i replacing j and φn replacing ψn. Combining (B.11), (B.14),
(B.15) and (B.12) we get

E
(TrPb(I)) � 4‖h‖∞δε−2
∑

i,j∈
2

∥∥V 1/2
j P0V

1/2
i

∥∥
1 � 4‖h‖∞δε−2c(B)V0L

4. (B.16)

�

Appendix C. Estimate on the eigenfunction of Hb

In this section we prove Gaussian decay of the eigenfunction ψbβ and its y-derivative outside
the support of the random potential Vω. From the eigenvalue equation (H0 + Vω)ψbβ = Ebβψ

b
β

we get

ψbβ = R0
(
Ebβ
)
Vωψ

b
β . (C.1)

Thus ∣∣ψbβ(x)∣∣ �
∫

R×Ip

∣∣R0
(
x, x′;Ebβ

)
Vω(x′)ψbβ (x

′)
∣∣ dx′

� V0

{∫
suppVω

∣∣R0
(
x, x′;Ebβ

)∣∣2 dx′
}1/2

(C.2)
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and ∣∣∂yψbβ(x)∣∣ � V0 sup
x

∣∣ψbβ(x)∣∣
∫

suppVω

∣∣∂yR0
(
x, x′;Ebβ

)∣∣ dx′. (C.3)

We need bounds on the integral kernel R0 and its y-derivative to get an estimate of the
eigenfunctions and their y-derivative. From [14] we have (E ∈ �ε)∣∣R∞

0 (x, x′;E)∣∣ � C(B)|�(αE)| e− B
8 |x−x′ |2

×
{

1 if B
2 |x − x′|2 > 1

1 +
∣∣ln (B2 |x − x′|2)∣∣ if B

2 |x − x′|2 � 1.
(C.4)

Calculating the y-derivative thanks to (A.10), and using bounds (6.16) of [14] we have∣∣∂yR∞
0 (x, x′;E)∣∣ � C ′(B)|�(αE)| e− B

8 |x−x′|2

×
{

1 + |x| if B
2 |x − x′|2 > 1(

1 +
∣∣ln (B2 |x − x′|2)∣∣) (1 + |x| + |x − x′|−1) if B

2 |x − x′|2 � 1.

(C.5)

With the help of (C.4) and (C.5) we can see that for L large enough

∣∣ψbβ(x)∣∣ � C(B)ε−1V0L×
{

e− B
8 (x− L

2 +logL)
2

if x �∈ [−L
2 ,

L
2

]
ln(BL2) if x ∈ [−L

2 ,
L
2

] (C.6)

and

∣∣∂yψbβ(x)∣∣ � C ′(B)ε−2V 2
0 L

2 ×
{

e− B
8 (x− L

2 +logL)
2

(1 + |x|) if x �∈ [−L
2 ,

L
2

]
L(ln(BL2)

2
(1 + |x|) if x ∈ [−L

2 ,
L
2

] (C.7)

Indeed, for |m| > 1, B2 [(x − x ′)2 + (y − y ′ −mL)2] > 1 thus we have∣∣R0
(
x, x′;Ebβ

)∣∣ � C̃(B)ε−1 e− B
8 (x−x′)2 +

∑
|m|�1

∣∣R∞
0

(
xy, x ′y ′ −mL;Ebβ

)∣∣ . (C.8)

If x �∈ [−L
2 ,

L
2

]
since x′ ∈ suppVω the terms |m| � 1 also have a Gaussian bound and∣∣R0
(
x, x′;Ebβ

)∣∣ � C̃ ′(B)ε−1 e− B
8 (x−x′)2 . (C.9)

Replacing this bound in (C.2) we get the Gaussian decay in (C.6). On the other hand if
x ∈ [−L

2 ,
L
2

]
we can use the logarithmic bounds for the terms |m| � 1 and we remark that

they are integrable and bounded byL2 ln(BL2). The same arguments hold for the y-derivative.
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[5] Macris N, Martin P A and Pulé J V 1999 On edge states in semi-infinite quantum Hall systems J. Phys. A: Math.

Gen. 32 1985
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